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We apply the method of approximate factorization to derive a 
second-order accurate splitting of the incompressible flow equations 
(Stokes or Navier-Stokes equations). This is novel because the method 
of approximate factorization was believed inapplicable to this type of 
equation system. We demonstrate the resulting splitting on a second- 
order Crank-Nicolson discretization and point out its intimate rela- 
tionship to some existing second-order accurate splitting (projection) 
methods. Further, we use the approximate factorization method to 
derive entirely new splittings. We first develop a new generalized 
second-order accurate splitting which may be specialized to a variety of 
applications. We indicate its applications to finite-elements, “checker- 
board-free” cell-centered discretizations, and ocean modeling. We 
then generalize the original splitting to an arbitrarily high-order 
scheme. 0 1992 Academtc Press. Inc. 

I. INTRODUCTION 

We will be concerned with the problem of time discretiza- 
tion of the Navier-Stokes equations describing the flow of 
an incompressible fluid, 

g+u.vu= -vp+vv.vu, 
(1) 

v-u=o, 

where u is the velocity, p is the pressure (divided by the den- 
sity), and v is the (constant) kinematic viscosity, together 
with the initial and boundary conditions. The initial condi- 
tions consist of a specified solenoidal velocity field and the 
usual boundary conditions involve specified velocities, 
u = w, on the boundary (for example, zero slip on solid 
boundaries); in such a case no boundary conditions for the 
pressure are needed. Spatial discretization is unspecified; for 
the moment we will assume a semi-discrete representation 
in which only the time is discretized. 

The earliest methods such as MAC [l] or Chorin’s 
method [2] employed a time discretization of these 
equations which operated in two steps, as 

a - un 

(a) At 
-+u”“~vu*=vv-vu*, (2) 

(b) 

U n+l-fi 

At 
= -vp*, 

(3) 
V.un+l- - 0, 

where At is the time step and the superscripts denote the 
time level (u* represents un in MAC and ti in Chorin’s 
method; the pressure time level is unspecified in MAC and 
is taken to be the new time level by Chorin). Chorin [2] has 
given an elegant interpretation of the above procedure as a 
projection of the intermediate velocity field fi onto a sub- 
space of vector fields with zero divergence. One may also 
interpret Eqs. (2) and (3) as an operator splitting or frac- 
tional-step method, since by adding the two sets of equa- 
tions to eliminate the intermediate velocity ti one obtains a 
discrete approximation of the. original equations [3] 
(strictly speaking, since the MAC method is explicit for the 
momentum equation it should not be so interpreted). 
Whichever interpretation is adopted this procedure has the 
great conceptual and practical advantage of decoupling 
the “pressure correction” from the momentum equation 
calculations. 

Since that time many such decoupled methods for the 
incompressible flow equations have been developed. They 
have usually (but not always) adopted either the projection 
or the operator splitting point of view. Following Chorin, 
the projection method is at least partially inspired by the 
existence theory of the Navier-Stokes equations and there- 
fore is grounded in the properties of Eqs. ( 1) in differential 
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form. The operator splitting method originates as a purely 
numerical method which is general and not specific to a par- 
ticular set of equations [3]. It should be emphasized that 
the practical end result when applied to the incompressible 
flow equations is the same in both cases, and the difference 
is only in the point of view and the personal preference of 
the practitioners. In this paper we take the operator splitting 
approach, and in particular we use the method of 
approximate factorization which is a particular form of the 
operator splitting method. 

In the past there have been at least two additional but not 
independent issues in connection with this problem of 
decoupling: the issue of intermediate boundary conditions 
and the issue of time accuracy. Usually the problem is for- 
mulated in semidiscrete form as above, in which case the 
issue of the appropriate boundary conditions for the inter- 
mediate quantities is relevant and usually comes up when 
it is desired that the resulting method be second-order 
accurate. There is a subtle difference between the projection 
method and the operator splitting approach in this regard, 
in that it is conceptually easier to apply the operator split- 
ting method to the fully-discrete form of the equations (in 
which the boundary conditions have already been applied) 
and therefore the question of intermediate boundary condi- 
tions never arises. As described later, this does not prevent 
the practitioners of the projection method from arriving at 
equivalent results! In the remainder of this section we will 
provide a brief and by no means exhaustive review of these 
issues as an introduction to our own approach which we 
show leads to a generalized framework for constructing new 
second- and higher-order accurate schemes. Henceforth, 
we will use the term splitting as a generic term for the 
decoupling, whether accomplished from the projection or 
the operator splitting point of view. 

The above differencing of the equations is clearly Iirst- 
order accurate in time and may require an excessively small 
time step dt for an accurate integration in time, so that a 
second-order accurate discretization is usually of interest. 
Furthermore, in regions of high viscosity or small mesh size 
the viscous terms are a source of stiffness and one is there- 
fore most frequently interested in an implicit form of the 
equations. The prototype for an implicit second-order 
accurate discretization of the Navier-Stokes equations is 
the system of CrankkNicolson equations, 

u 
f7+1 -“Ii 

At 
+ (u Vu)” + ‘D 

= -v*“+“~++7.V(u”+~ + U”), 

v.u , nt1 =o 
(4) 

where the precise discretization of the advection terms is left 
unspecified but is assumed to be explicit and time-centered 

to within second order. Individual methods often differ in 
the discretization of this term. This type of discretization, 
where the advection terms are explicit, is sometimes called 
semi-implicit [4]. Among the advantages of this discrete 
system is the fact that it requires precisely the same initial 
and boundary conditions as the original Navier-Stokes 
system, and in particular it does not require special 
boundary conditions for the pressure. The system may be 
solved directly or by various global iteration schemes; 
unfortunately, its computational solution is very expensive 
because all the variables, i.e., the velocity components and 
the pressure, are coupled and together they form a very 
large system. In order to alleviate this it was natural to 
consider the following splitting: 

(4 
h-u” 
y+ (u.Vu) “+l+JV.V(i+u”), (5) 

(b) 

U 
n+l 

-ii 

At 
= -vpn+ 112, 

v.u ) n+1=0 
(6) 

where the first step represents a centered implicit equation 
for the effects of transport and viscosity and the second step 
is identical to the projection described above. The splitting 
is much more economical because it corresponds to the 
solution of several much smaller decoupled systems for the 
velocity components and the pressure, respectively. Again, 
this decoupling may be considered as an application of the 
projection method or as an operator splitting, depending on 
one’s point of view. 

Unfortunately, this procedure introduces a “splitting 
error” which typically reduces the time accuracy to first 
order. The error has been analyzed by Orszag et al. [ 51 and 
shown to be associated with the formation of a spurious 
boundary layer due to the fact that the boundary conditions 
in the projection step fix only one of the velocity com- 
ponents on the boundary and not both. The projection step 
(b) is equivalent to (and in fact is usually solved as) a 
Poisson equation for the pressure, 

v.vp n f 112 _ +.a. 
The boundary conditions for this equation are implied by 
Eq. (6). In the case of time-independent boundary velocities 
w, both un+‘= w  and G= w, and therefore we have 
VP ’ + ‘I2 = 0 on the boundary. Note, however, that this over- 
specifies the problem because only one component of the 
pressure gradient on the boundary is sufficient to determine 
the pressure uniquely. A similar difficulty is also present in 
the original Navier-Stokes equations (1) and it has been 
resolved in favor of the pressure gradient component nor- 
mal to the boundary [6]: a Neumann boundary condition 
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problem for the pressure. Actually, aside from a question at 
the initial time, t + 0, the Neumann boundary condition is 
compatible with both the normal and tangential velocity 
boundary conditions in the original differential equation 
system [6]. This is no longer true when the split projection 
step (b) is employed in the semi-discrete problem, and 
specifying a Neumann boundary condition for the pressure 
to satisfy the boundary condition for the normal velocity 
fails to satisfy the tangential velocity boundary condition 
and gives rise to the “splitting error” in the form of a 
spurious boundary layer. Gresho [4] has suggested that 
some form of this error is inevitable in splitting methods. 
The object is to minimize the error, which we take to be 
equivalent to making the numerical method at least second- 
order accurate in time. 

only after the equations have been spatially discretized and 
the boundary conditions applied. The splitting and the 
preservation of second-order accuracy is associated with the 
approximate factorization of the system matrix and not its 
modification by boundary conditions. This method, there- 
fore, appears to have a number of highly desirable proper- 
ties. Unfortunately, this type of method has been deemed 
inapplicable to the incompressible Navier-Stokes equations 
[S, 161 because the absence of a time derivative term in the 
continuity equation renders the equations of mixed 
parabolic/elliptic type. Therefore, to our knowledge, the 
method has never been applied to the incompressible 
Navier-Stokes equation system. 

There have been many proposals to restore second-order 
accuracy by means of modified boundary conditions. These 
include modifying velocity boundary conditions for the 
momentum equation [7-93, modifying the homogeneous 
Neumann boundary condition for the pressure Poisson 
equation [S, lo], or both [4]. However, using modified 
boundary conditions is a delicate matter. Some of these 
schemes work very well (as demonstrated later) but care 
must be used both in the implementation, since second- 
order accuracy can be easily destroyed, and in employing 
the right formulation, since weak instabilities may be 
induced [S]. Interestingly, there also exist several splitting- 
type methods for the incompressible Navier-Stokes 
equations which achieve second-order accuracy without 
the explicit use of modified boundary conditions. These 
methods include the pressure correction method of van Kan 
[Ill, the incomplete iteration method of Bell et al. [ 121, 
and Gresho’s (simpler) projection 2 [4]. Many of the 
currently existing methods have been systematized by 
Gresho [4] from the projection method point of view. 

In this paper we approach the problem of splitting 
the Crank-Nicolson discretization of the incompressible 
Navier-Stokes equations, Eq. (4) from the point of view of 
the approximate factorization method. We find, in con- 
tradiction to existing opinion, that there indeed does exist 
an approximate factorization associated with these equa- 
tions that preserves second-order accuracy. In fact, it turns 
out that those methods that do not require modified 
boundary conditions [11, 12, 43, mentioned above, are 
special cases of this approximate factorization. We then 
generalize the method in two directions. First, we generalize 
the structure of the approximate factorization so that it 
becomes a discretization method capable of generating 
brand-new applications. We illustrate this new capability by 
showing how to generate second-order accurate splittings 
for finite-element discretizations with a consistent mass 
matrix and for methods with a projection step where the 
continuity constraint is only approximately satisfied. 
Second, we generalize to the case of an arbitrary order of 
accuracy. 

2. APPROXIMATE SECOND-ORDER FACTORIZATION 

For the sake of simplicity we will henceforth restrict 
ourselves to the Stokes equations, which are sufficient to 
illustrate the essential features of our method. The Crank- 
Nicolson form of the Stokes equations may be written as 

There is an alternative and general approach to operator 
splitting, called the approximate factorization method [3, 
13, 141, that applies to hyperbolic, parabolic, and mixed 
hyperbolic/parabolic equation systems, usually via an ADI- 
type splitting. A particular method, called the stabilization 
method by Marchuk [14] and the “delta” formulation 
by Warming and Beam [ 131, is briefly reviewed in 
Appendix A. This method has the remarkable property that 
if the underlying (unsplit) fully-discrete equation system is 
second-order accurate in time, then the split system is also 
second-order accurate. Questions of intermediate boundary 
conditions did arise initially [15] because the earlier for- 
mulations of the method [ 13, 161 were put in terms of a 
semi-discrete formulation, just like Eqs. (2t(7), in which 
the question of boundary conditions at intermediate steps 
was relevant. However, more recent treatments of the 
method [ 143 have made it clear that boundary conditions 
are not an issue as far as second-order accuracy is concerned 
because the splitting is performed in matrix form, that is, _ 

“n+‘-“n= +(p”+l +p”) 

+$ “V .v(u”+’ + u”), (8) 

v.u ) n+l=o 

together with the appropriate initial and boundary condi- 
tions (which are the same as for the Navier-Stokes equa- 
tions). Note that the pressure gradient term is written in an 
alternative but equivalent form and that the spatial 
operators are still in differential form, so that the boundary 
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conditions are required to be stated separately. It is now We now observe that this equation may indeed be 
convenient to introduce some arbitrary spatial discretiza- approximately factorized in a manner similar to Eq. (A2) of 
tion which in general will put the equations in the form Appendix A : 

M(u”+’ -“y.fvL(u”‘l +u^)+$G(pn+’ +p”) 

= Atf”+“/=, (9) 
GTUn + 1 

=g 
n+l 

where L, G, and GT are the discrete matrix versions of the 
Laplacian, gradient, and divergence operators, respectively, 
each already incorporating the boundary conditions, and f 
and g are terms that also arise due to the application of 
boundary conditions. This is similar to the notation 
employed by Gresho and Chan [ 171; the boundary condi- 
tion terms should be such as to preserve the second-order 
accuracy of the discretization, namely, fn+‘12 is time cen- 
tered and g” + ’ is defined at the new time. The divergence 
operator will typically be the matrix transpose of the 
gradient operator. The matrix operators M and L are block 
diagonal, each block corresponding to a component of 
velocity. The matrix M represents the mass matrix in the 
case of a finite-element discretization, a diagonal matrix in 
the case of a lumped-mass approximation, and the identity 
matrix in the case of a finite-difference discretization. For 
the moment we will restrict ourselves to those spatial 
discretizations for which M = I. the identity matrix. We 
will return to the more general equation later. The above 
equation may then be rewritten in matrix format, suggestive 
of Eq. (A 1) of Appendix A, 

I-$vL $G [ 1 At 
2GT 0 

=At $T -;][;:]+At[;;:;]3 (lo) 

which clearly indicates the structure of the Crank-Nicolson 
Stokes problem, suggestive of a constrained minimization 
problem using Lagrange multipliers. The matrix on the 
left-hand side is typically invertible (aside from details 
connected with fixing the level of pressure) but its large size 
is an indication of the difficulty of the fully-coupled implicit 
Stokes or Navier-Stokes problem. We have chosen to write 
the equation in this form to emphasize the fact that usually 
this matrix is symmetric, although this is not necessarily 
always true. This equation is assumed to be second-order 
accurate in time. Our object is to find an approximate fac- 
torization of the matrix on the left-hand side that preserves 
this order of accuracy. 

VL -G d’ 
=At 

-z I[ I ‘GT 0 p” 

Expanding, this equation is equivalent to 

U 
n+l -““-$&(““+I +~“)+~G(p”+~+p”) 

=Atf”+‘/= +~vAt*LG(p”+‘-pp”), 

GT$+ 1 - -g*+‘. 

(11) 

Note that this differs from Eq. (9) by a single additional 
term on the right-hand side. This term arises naturally as a 
consequence of the approximate factorization, just as a 
similar term arises in the same way in Appendix A. It is 
important to observe that this additional term is O(At3), the 
same order of magnitude as the leading truncation error 
term of the Crank-Nicolson equation (8), so that the results 
of using this equation will differ from Crank-Nicolson 
results by O(At2) globally. This equation, therefore, is also 
a second-order accurate approximation to the Stokes 
equations, just like the Crank-Nicolson equation. This 
is precisely analogous to the idea of the approximate 
factorization method, reviewed in Appendix A, except that 
now it is applied to the incompressible flow equations rather 
than to a system of parabolic or hyperbolic equations. 
As remarked in the Introduction, this was previously 
considered not possible because of the semi-elliptic nature 
of the incompressible Navier-Stokes equations [S, 16-J. 

The approximate factorization is equivalent to the 
following splitting scheme: 

(b) 
At 

U n+l&TGp”+‘, 

(12b) 
GT”n+‘= n+l 

g . 

This is analogous to the splitting of Eqs. (5), (6) except that 
here the discrete Crank-Nicolson operators are being 



340 DUKOWICZ AND DVINSKY 

used and, therefore, there is no question of intermediate 
boundary conditions. The boundary conditions have 
already been applied at the level of Eq. (9). 

The projection step, Eqs. (12b), is of course first solved 
for the pressure from the equation 

where GTG is assumed to be invertible, and then for the 
velocity from 

At 
U n+I=fi--Gpn+l. 

2 

To complete the description of the method we must 
describe the procedure to obtain the initial pressure. Given 
the initial solenoidal velocity field u”, the initial pressure p” 
may be obtained by, in effect, solving the Crank-Nicolson 
equations, or else Eqs. (1 1 ), at the initial time in the limit 
At + 0. The appropriate equation becomes 

GTGpo = v GTLuo + GTf ‘. (14) 

This splitting of the Crank-Nicolson Stokes equations is, 
therefore, summarized by Eqs. (12) and (14). 

We now remark that Eq. (1 l), which is the equation effec- 
tively solved by the splitting, is basically the same as the 
equations effectively solved by the splittings of the pressure 
correction method of van Kan [ 111, the incomplete 
iteration method of Bell et al. [ 121, and Gresho’s (simpler) 
projection 2 [4]. These methods, therefore, are basically 
equivalent to the above realization of the approximate 
factorization method as far as the splitting scheme is 
concerned. For example, the splitting (12) may be written in 
various different but equivalent forms, such as 

(a) (I-$vL)i=(I+$vL)u”-AtGp”+Atf”i”2, 

@I U .+1&+(,n+I - P”), 

~T~n+l - - gn+‘, 

which corresponds to van Kan’s pressure correction 
method. 

3. SPLITTING WITH PRESSURE BOUNDARY 
CONDITIONS 

Before proceeding with the generalizations, we will now 
describe an existing splitting method based on modified 
pressure boundary conditions [S] for comparison with the 

previous results. Again, we deal with a Crank-Nicolson- 
type discretization and the Stokes equations for simplicity. 
The splitting takes the form: 

(1) Projection equations, 

v.ii=o; 
(15a) 

(2) Viscous equations, 

Un+l -ti 1 
At 

=2vv.v(i+u”+‘), (15b) 

for which the boundary conditions are u”+ * = w, the 
specified boundary velocities. The reversed order of the 
steps is inconsequential, since the initial velocity profile 
must be projected in any case; we are merely following the 
convention of [S], since we are describing their method. 
With this ordering one identities z/ + ’ with the former inter- 
mediate velocity and vice versa, and so one accepts un + ’ 
withV.u”+’ # 0 but with the correct boundary conditions, 
whereas with the former ordering one obtains un+’ with 
v.p+1 =O, but with incorrect boundary conditions. The 
computed results are identical. 

The projection equations are themselves solved in two 
steps. First, a Poisson equation for the pressure is solved, 

v.vp ntl:2&7.Un 

At ’ 

for which we will consider three types of boundary condi- 
tions: 

64 n% n+ ‘I2 = 0, where n is a unit normal vector at 
the boundary. This is the “standard” case, discussed in the 
Introduction, known to be only first-order accurate in time. 
Note that this produces a velocity at the boundary from 
Eq. (15a) that is consistent with the specified normal 
component of the boundary velocity. 

(b) n.Vp ” + iI2 = - v n . V x V x u”. This is the improved 
pressure boundary condition of Orszag et al. [S] designed 
to produce second-order accuracy. Note that this produces 
intermediate normal velocities at the boundary that are not 
consistent with the velocity boundary conditions but, on the 
other hand, it produces a pressure gradient that is more 
consistent with the momentum equation at the boundary. 

(c) ” .vpn+1/== vn . V . Vu”. This is very closely related 
to boundary condition (b). Note that boundary condi- 
tion (b) is derived from this condition by the use of the vec- 
tor identity V2u = V(V . u) -V x V x u and the assumption 
of incompressibility. This seemingly equivalent boundary 
condition [S, 101 is included to illustrate the deleterious 
effect of even minor variations. 
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The second step involves the update of the intermediate Case (1) is the lowest symmetric eigenmode of the 
velocity field ti = un - d t Vp” + ij2, where a “boundary condi- analytic test problem treated by Orszag et al. (OID) [5], 
tion,” V x 1= V x un, is used to extrapolate the intermediate corresponding to a half-period in the vertical direction; 
velocity field fi for use in the viscous equations, Eq. (15b). however, it is not an exact eigenmode of the discrete 
Higher order versions of this method with appropriate problem. Case (2) is a closely related velocity field that does 
extrapolations of boundary condition (b) are described not satisfy the compatibility conditions for the initial 
in [18]. velocity field discussed by Deville et al. [lo], whereas 

4. COMPUTATIONAL EXAMPLES 

As a concrete illustration of the foregoing methods we 
have chosen to implement the MAC staggered-mesh spatial 
discretization [I] for the Stokes equations with kinematic 
viscosity v = 0.1 and to apply it to a series of test problems 
which are related to one introduced previously [S, lo]. 

The test problems share the same mesh and boundary 
conditions and differ in the initial velocity distribution. 
The problem domain consists of a square box such that 
1x1, 1 yl d 1. The upper and lower boundaries are periodic, 
with the pressure (p), the x-component of velocity (u), and 
the normal derivative of the y-component of velocity (u) set 
equal to zero at both, and the left and right boundaries are 
assumed to be no-slip walls (u, u = 0). Note that since we 
have chosen the upper and lower boundaries to be 
antinodes for the vertical velocity, they are nodes for the 
pressure and therefore require Dirichlet boundary condi- 
tions for the pressure. The mesh consists of 13 x 13 cells. 
This coarse discretization is sufficient to resolve the pressure 
and velocity profiles employed and, in any case, the spatial 
discretization employed is not important, since we are only 
interested in questions arising from the time discretization. 

We employ three different initial velocity profiles. The 
U- and u-components at cell faces are defined analytically to 
satisfy the boundary conditions but they may not satisfy the 
discrete solenoidal condition. This preliminary velocity field 
is then projected (in the sense of Chorin) to obtain the initial 
velocity conditions. The three preliminary velocity fields 
are: 

(1) u=cosEy cosh?x- 
[ 

cosh( x/2) 
2 2 cos p 

cos px ) 1 
v= -siniy sinh;x- 

sinh(rc/2) 
sin p 

sin px , 1 
where p = 2.642442 is the lowest eigenvalue of the equation 
p tan p = - (7c/2) tanh(rr/2) [S], 

(2) u=;cos;l.l1 -x212, 

v=4xsin5u[l -x2], 

(3) u = 0, 

v = - cos 7cy sin 7r.x. 

FINRL VELOCITY VECTO 
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FIG. 1. (a) Final velocity field for cases (1) and (2). (b) Final velocity 
field for case (3). 
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case (1) does. In practice, we have not observed any 
differences in behavior between these two cases, since both 
are dominated by the lowest symmetric eigenmode of 
the problem, but we nevertheless retain the latter case for 
completeness. Both these cases are analytically solenoidal. 
Case (3) is not initially solenoidal and it also differs in that 
it represents a full period in the vertical direction. 

For each of these cases we have computed the evolution 
of the velocity profile from the initial time t = 0 to a final 
time r = 1 with time steps d t differing by a power of 2 for 
each of the methods: Crank-Nicolson (CN), splitting with 
pressure boundary conditions (a), (b), (c) of Section (3) 
(OIDa, OIDb, OIDc, respectively), and the present method 
(DD). The time steps ranged from At=2-‘to At=2-* in 
six increments. As a reference for each of the cases we 
computed the velocity field at the final time using 
Crank-Nicolson with a very small time step At = 2-9 = 
0.00195 (i.e., 5 12 time steps). The solution in each case 
consists of a decaying velocity field; however, we did not 
measure the decay rate but instead we monitored the 
normalized L2 error: 

This is because much of the error appears as an erroneous 
velocity profile, in the form of a spurious velocity boundary 
layer [S], which may not be reflected in the behaviour of the 
decay rate. Representative velocity fields at time t = 1 are 
shown in Fig. la for cases (1) and (2), and in Fig. 1 b for 
case (3 ). 

The pressure boundary conditions of Section 3 are quite 
obvious for the MAC discretization, except for case (c). For 
this case the boundary condition for the left and right 
boundaries is 

ap a5 
-=VQ ax 

and the second derivative of velocity must be extrapolated 
from the interior. Taking into account the fact that u=O 
and au/ax = 0 (from the divergence condition), we obtain at 
the left boundary, for example, 

a% [ 1 dX2 ' @u,=1-~;=2), ;=,=2 

where the subscript i refers to the cell face index in the 
x-direction, and Ax is the corresponding cell spacing. 

The convergence rates of the error for the different 
Error = 

Jc IF= I - U,ef12 

Jrn 

001 01 1 1 

Dt 

FIG. 2. Error convergence rate for different methods for the case of 
initial velocity tield (1). 

FIG. 3. Error convergence rate for different methods for the case of 
initial velocity field (2). 
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methods are shown in Figs. 2, 3, and 4, for the three cases 
of initial velocity profiles described above. It may be 
observed in all cases that Crank-Nicolson, the OID 
improved boundary condition (b), and the present method 
all display second-order convergence; the standard pressure 
boundary condition (OIDa) is first-order, and the more 
conventional modified pressure boundary condition 
(OIDc) is the worst of all, appearing to only marginally 
reach asymptotic first-order behavior in the range of time 
steps investigated. Further, the magnitude of the error is 
uniformly lower for the second-order methods as compared 
to the first-order methods. The error of the present method 
is lowest of the split methods, being only slightly greater 
than the unsplit Crank-Nicolson error (in fact, the two 
errors essentially coincide for the third test problem). This 
comment applies in principle to the other methods [ 11,12,4] 
that possess the same generic splitting. 

Although the behavior of the improved pressure 
boundary condition (OIDb) of [S] is very satisfactory, it 
appears that the ostensibly minor variation represented by 
OIDc not only destroys the order of approximation but it 
also introduces substantial error, and this is a cautionary 
note regarding the application of intermediate boundary 
conditions to split operator equations. 

25 
-$ (L*-GTM-‘G) 1 ’ 

Dt (18) 

5. GENERALIZATION OF THE SECOND-ORDER 
METHOD AND ITS APPLICATIONS 

We return now to consider a discretized equation system 
which is slightly more general than Eq. (9), which we write 
as 

M(u” + ’ -u”)-+f+l +u”)+$G(p”f’+p”) 

= A tan + 112, (164 

(16b) 

to emphasize its second-order accuracy. Alternatively, we 
may write it in matrix form as 

=[“‘tFB -:,‘“][,;]+At[;;;;;], (17) 

where Apn+’ = pnfl -p”, M is a positive-definite block 
diagonal matrix, which may represent the mass matrix 
associated with a finite-element discretization of the 
momentum equation or else the identity matrix in the case 
of a finite-difference discretization, the matrix B represents 
those terms in the momentum equation being treated 
implicitly, such as the viscous terms in Eq. (9) or the 
Coriolis terms in climate or meteorological models, for 
example, and an+li2 and b”+’ represent all the explicitly 
known terms and boundary condition terms on the right- 
hand side. Our object is to find a general approximate fac- 
torization of the matrix on the left-hand side that preserves 
the second-order accuracy of the system. 

Consider the approximate factorization 

FIG. 4. Error convergence rate for different methods for the case of 
initial velocity field (3). where L* is an invertible matrix that we are free to choose 
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arbitrarily, but which should be an approximate Laplacian 
that in some sense approximates or is close to GTM-‘G. 
Using this approximate factorization of the matrix on the 
left-hand side of Eq. (17) and expanding, we obtain 

M(u”+’ -u”)-+(u”+l +un)+fG(pn+’ +p”) 

=dfa”+1’2+~BM-IG(p”+1-pn), (19a) 

GT,,” + I 

=b “+‘+$(L*-GTM-‘G)(p”+‘-p”). (19b) 

Note that Eq. (19a) differs from (16a) by a term of U(,4t3), 
and Eq. (19b) differs from (16b) by a term of 0(dt2). The 
extra term in the momentum equation is of the same order 
as the truncation error of this equation, as was the case 
previously and, therefore, does not change the order of 
approximation of this equation. However, the extra term in 
the continuity equation cannot be similarly compared to the 
truncation error, since the continuity equation has no 
temporal truncation error and, therefore, it is not clear what 
effect it has on the order of accuracy of the entire system. 
We analyze this in Appendix B and find that the solution of 
Eqs. (19) for the velocity accumulates errors of O(dt3) and 
for the pressure of O(dt2), and therefore globally of 0(dt2) 
and O(dt), respectively. This is precisely the order of the 
corresponding global errors associated with Eqs. (16) 
and, therefore, the approximate factorization of Eq. (18) 
preserves the order of accuracy of Eqs. (16), as desired. 

The approximate factorization given by Eq. (18) is 
equivalent to the following splitting of Eqs. (16): 

(a) (M-$B) (a-un)=dt(Bu”-Gp”+a”+“*), (20a) 

(b) qL*(p”+l - p”) = G=fi - bb”+ *, 

(2Ob) 
M(u”+ ’ -fi)= -+(p”+’ -P”). 

These equations are solved in sequence for fi, p”+ ‘, and 
U ‘+ ‘. Note that we have not only accomplished a splitting 
into three smaller decoupled problems, but also that we 
have replaced a problem for the pressure involving the 
GTM-‘G matrix by one involving the L* matrix, while 
preserving second-order accuracy. 

Applications 

The splitting of Eq. (20) is a generalization of Eqs. (12) 
and (13). It may not be the most general splitting possible; 
however, it illustrates the usefulness of the approximate 

factorization approach. We now demonstrate its usefulness 
by outlining some sample applications. 

(a) Finite elements. Gresho and Chan [17] have 
considered splittings of finite-element discretizations that 
involve the use of the lumped mass matrix in the pressure 
solution. Their methods are globally first-order accurate for 
the velocity. The splitting of Eqs. (20), with B the viscous or 
Laplacian matrix and L* = GTM;’ G, where M, is the 
lumped mass matrix, produces second-order global 
accuracy for the velocity at the cost of solving an extra 
system involving the consistent mass matrix M. This, 
however, is inexpensive via conjugate gradients with M, as 
a preconditioner. 

(b) Cell-centered finite-di@erences or equal-order finite- 
elements. The use of cell-centered finite-differences for 
the incompressible Navier-Stokes equations is attractive 
because of their greater simplicity, but the operator GTG, 
which appears in Eq. (13) and also in other similar split- 
tings, contains a null-space which leads to the so-called 
“checkerboard” modes in the pressure. A solution is to 
replace GTG in Eqs. (13), for example, by a null-space-free 
Laplacian operator L* which approximates GTG, but this 
makes the system only first-order accurate in time [ 193. In 
this case, the use of the splitting (20) with M = I, restores 
second-order accuracy. 

An analogous situation exists in the case of equal-order 
finite-element discretizations [20,21]. In a similar manner, 
the use of the splitting of Eq. (20) would permit second- 
order accuracy in this case also. 

(c) Ocean dynamics. The GFDL model for ocean 
dynamics, as described by Semtner [22], for example, leads 
to a system of two-dimensional barotropic equations very 
similar to Eqs. (16), except that p is the surface pressure, u 
is a vertically-averaged horizontal velocity field, M is a 
diagonal matrix involving depth, and B is an antisymmetric 
matrix representing Coriolis forces. The antisymmetry of B 
is inconvenient because the resulting system matrix is non- 
symmetric and therefore more difficult to solve by iterative 
methods as compared to a symmetric system. In addition, a 
consistent discretization leads to a nine-point operator con- 
taining an undesirable null-space, which is avoided by an 
ad-hoc replacement of this operator by a null-space-free 
five-point operator. The use of the splitting of Eq. (20) in 
this case permits a second-order accurate system split into a 
nonsymmetric but trivially solved Coriolis system (20a) and 
a symmetric null-space-free system for the surface pressure 
(20b) using a live-point operator for the matrix L*. 

6. HIGHER ORDER APPROXIMATE FACTORIZATION 

We will now indicate how the ideas of Section 2 may be 
extended to an arbitrarily high order, assuming that the 
solutions have sufficient smoothness for this to make sense. 
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There are many different ways to obtain a high-order dis- 
cretization for the Navier-Stokes equations. To be specific 
we will follow the procedure of [S, 183, keeping in mind, 
however, that our method is more generally applicable. We 
begin by writing the Navier-Stokes equations in the form 

all 

at- 
- -Gp+vLu+Nu, 

GTu = 0, 

where G represents the gradient operator, GT the 
divergence operator, L the linear viscous operator, and N 
the nonlinear advection operator. The momentum equation 
is then integrated over a time step dt, from t” to t” + ’ : 

where the terms f and g appear because of boundary condi- 
tions and where henceforth we interpret G, GT, L, and N to 
be discrete operators suitably modified by the applications 
of boundary conditions. We assume that we are able to 
apply the boundary conditions such that Eq. (21) is rth- 
order accurate. Our object is to demonstrate that we can 
define a splitting that preserves this order of accuracy. These 
equations are analogous to Eq. (10) of Section 2, and they 
exhibit the same structure and computational complexity. 

We now modify the above equation by the addition of a 
term to the right-hand side. This term is 

dt*B;LG V’- ‘p”+ ‘, (22) 

U 
n+l - u" zz j,;+‘(-Gp+vLu)dr+ j’n+‘Nudt. 

where V is the backward-difference operator [23], such that 
r 

= 0. 

vp n+l- 
GT,,fl+ 1 

-pn+l -p” 

and 
The nonlinear terms are discretized using an explicit 
rth-order Adams-Bashforth scheme, 

r(r--1) -1 

I 

p+ L r-1 

Nudt=At 1 y,Nu”-k+O(At’+l), 

v~p~+‘=P.+‘-~P.+--p’ - . . . 

I” k=O = P n+‘+P:, 

and the linear terms are discretized using an implicit where 
rth-order Adams-Moulton scheme, 

s 

p + I bl 

(-Gp+vLu)dt=At c ljk(-Gpn+l--k+vLu”+l~k) 
f ” k=O 

+ O(At’+‘), 

p;’ +p.+T r(r- 1) pH-l - . . . 

=kcl QP-k, 
where yk and fik are appropriate coefficients. Note that it is 
not necessary for our method that the advection terms be 
differenced explicitly. The discrete equations may now be 

collects the terms involving explicitly known pressures. It 

summarized as 
may be shown ~231 that 

U “+1-dt~ovLu”+1+dt/30Gp”+1=F”+O(,4t’+1), Vr--lpn+‘=At’-’ G=u”+l co, [ 1 “,‘,;2 
n+l + O(A t’), 

where 
r-1 

F”=u”+dt 1 ~k(-Gpn+l-k+vLu”+l-k) 
k=l 

and hence the term (22) is O(d t’+ ’ ), the same order of 
accuracy as the truncation error of Eq. (21). Supplemented 
by this term, Eq. (21) may now be factored as follows: 

r- 1 

+ At c ykNCk 
k=O 

AtBoG un+l I[ 1 0 pnC1 

collects the explicit terms. If we now apply boundary condi- 
tions, the above equations may be written as 

=F”+At/?,f+O(At’“‘), 

GT,f+‘- - g, 

(21) 
This corresponds to the approximate factorization of 
Section 2, but now for an rth-order accurate scheme. The 
splitting equivalent to Eqs. (12) follows immediately. 
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Expanding, this equation is equivalent to 

The methods of approximate factorization are known 
to be very effective as second-order accurate methods 
for evolution equations of parabolic or hyperbolic type 
[13, 141. We have now shown how to extend the ideas 
underlying these methods to the equations of incom- 
pressible flow. The resulting splitting is found to be closely 
related to some existing second-order methods whose con- 
nection to approximate factorizations was not suspected. 
The test problems indicate that this type of splitting is very 
accurate, with an error that is only slightly worse than the 
unsplit Crank-Nicolson method. 

This application of the approximate factorization method 
thus provides an alternative approach to, as well as new 
insight into, existing splitting methods for the incom- 
pressible Navier-Stokes equations. This is not all, however. 
The method of approximate factorization is a powerful tool 
which may be extended to derive brand-new splittings. We 
have demonstrated two such generalizations. In the one case 
we have derived a generalized form of a second-order 
accurate splitting which permits a variety of special cases; 
we have illustrated its usefulness with three sample applica- 
tions which by no means exhaust the possibilities. In the 
other case we have indicated how to extend the original 
method to higher than second-order accuracy. 

APPENDIX A: THE METHOD OF APPROXIMATE 
FACTORIZATION [ 13,143 

Let us assume we have a second-order accurate discretiza- 
tion of an evolution equation or of a system of evolution 
equations of the form 

where A represents a discrete operator matrix and 4 is the 
vector of unknowns. This equation may alternatively be 
written as 

- 4”) + AtAq5” = 0. (AlI 

Now, let us assume that the operator A may be split as A = 
A, + A,, where A’ and A, are nonsingular, easily solvable 
matrices. The above equation is then approximately 
factorized as follows: 

(I+$A’)(I+$A,) (qb”+‘~qb”)+AtAqY=O. (A2) 

Note that this differs from (Al) by a term of O(At3); that is, 
this equation has global second-order accuracy, just like 
Eq. (Al). Equation (A2) is, of course, equivalent to the 
splitting: 

(a) (I+$A,)+*+AtAqV=O, 

(b) (I+$A2) (@+I-f)-b*=O. 

Note that this is reminiscent of the splittings of Sections (1) 
and (2); however, the approximate factorization of Eq. (A2) 
is dependent on the structure of the matrix I + At/2A of 
Eq. (Al), characteristic of evolution equations of parabolic 
or hyperbolic type, which differs essentially from the 
structure of the corresponding matrix of Eq. (10). 

APPENDIX B: AN ERROR ANALYSIS OF THE 

GENERALIZED SPLITTING, EQ. (20) 

Consider the second-order accurate Crank-Nicolson 
discretization given by Eq. (16), 

M(u”+ ’ -““)-$j(““f’ +~“)+$G(p’+‘+p~) 

= Ata”+‘j2 + 0(At3), WI 
~T”n+l =f+’ 

3 

where the error term indicates the order of magnitude of the 
temporal truncation error. Formally solving this system for 
II”+’ andp”+’ indicates that the truncation error produces 
errors of O(At3) in the velocity and O(At’) in the pressure. 
This means that the global error for the velocity is 0(At*) 
and for the pressure it is O(At). 

Now consider the system given by Eq. (19), which is 
equivalent to the splitting specified by Eq. (20), 

+ $ (L* - G=M-‘G)(pn+ ’ - p”) 
O-32) 

~T~n+l=b”+’ 

&f’+‘+E;+‘, 

where ET + “* = 0(At3) is the combined error in the momen- 
tum equation, and Ey+’ = 0(At2) is the error in the 
continuity equation. We solve the momentum equation for 
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the velocity difference u”+ ’ - u” and eliminate it using the 
continuity equation to obtain 

=CT(~-~B)~‘~:+l-‘-(E;“-E;), (B3) 

where, for the case of time-independent operators, we can 
write 

E ;+‘-E~=~(L*-GTM-~G)(~“~‘-~~“+~“~~) 

= O(/4t3). 

Note that all the terms on the left-hand side of (B3) are 
U(dt), while the two error terms on the right-hand side are 
both O(dt3). Thus, the error in the continuity equation E, 
contributes the same order of magnitude of error to the 
solution of the pressure as the momentum equation error 
E,. Equation (B3) indicates that the pressure pn+ ’ 
accumulates errors of O(dt2). Substituting this in the 
momentum equation leads to the conclusion that the 
velocity un + ’ accumulates errors of O( d z3). This means that 
the global errors for the velocity and pressure are O(dt2) 
and O(dt), respectively, which is exactly the same as for the 
unsplit system, Eq. (Bl). 
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